Minimal Discriminants of Rational Elliptic Curves

Weierstrass model of the form $y^{2}=x^{2}+A x+B$ where A and B are integers e E the is a unique quantity known as the minimal Wiich lias the property that it is the smallest integer (in absolute hat for relatively prime integers a and b the elliptic curve $y^{2}=x(x+a)(x-b)$ omes equipped with an easily computable minimal discriminant. Recently sarrios extended this result to all rational elliptic curves with non-trivial torsion elliptic curves that admit an isogeny of degree $N=5,6,7,8,9,13$.
Elliptic Curves

- A Weierstrass model is an implicit function E of the form
where each a_{j} is a rational number. When E is differentiable at every point on the curve, we say that E is non-singular.
An elliptic curve is defined as a
pair (E, \mathcal{O}) where E is a smooth projective curve of genus 1 and \mathcal{O} is Intuitively, a rational elliptic Weierstrass model E together with a point \mathcal{O} not on E, often referred to as the "point at infinity"" of define the \mathbb{Q}-rational points of points $(x, y) \in \mathbb{Q}^{2}$ satistying the of points $(x, y) \in \mathbb{Q}^{2}$ sat
Weierstrass model of E.
The set $E(\mathbb{Q}$) is a finitely-generated
abelian group under its group law portrayed graphically on the right,
 with identity \mathcal{O}
We define the invariants c_{4} and c_{6}, the discriminant Δ, and the $c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{3} a_{1}+16 a_{2}^{2}$

$$
c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{3}^{2}+4 a_{6}\right)
$$

$$
\Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728} \quad j=\frac{c_{4}^{3}}{\Delta}
$$

We say that E is \mathbb{C}-isomorphic to E^{\prime} if and only if $j=j^{\prime}$, where j is the j-invariant of E and j^{\prime} is the j-invariant of E^{\prime}.
A \mathbb{Q}-isogeny between two elliptic curves E and E^{\prime} is a non-constant
morphism φ from E to E^{\prime} such that $\varphi\left(\mathcal{O}_{5}=\mathcal{O}^{\prime}\right.$ where φ is defined morphism φ from E to E^{\prime} such that $\varphi\left(\mathcal{O}_{E}\right)=\mathcal{O}_{E^{\prime}}$ where φ is defined over
\mathbb{Q}. If such a morphism exists, E and E^{\prime} are said to be isogenous and in the same isogeny class.

Let E and E^{\prime} be isogenous rational elliptic curves, and suppose that ϕ is
\mathbb{Q}-isogeny between them. We say a Q Q-isogeny between them. We say
that ϕ is a \mathbb{Q}-isomorphism and an admissible change of variables if and only if $\phi(x, y)=\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right)$ where $u, s, r, w \in \mathbb{Q}$. If Δ, are associated to E and $\Delta^{\prime}, c_{4}^{\prime}, c_{6}^{\prime}$
are associated to E^{\prime}, we have the are associated to E^{\prime}, we have the
relations $\Delta^{\prime}=u^{-12} \Delta, c_{6}^{\prime}=u^{-6} c_{6}$ and $c_{4}^{\prime}=u^{-4} c_{4}$. Curves between which such a ϕ exists are said to be \mathbb{Q}-isomorphic.
Kraus's Theorem Let p be a prime. The p-adic valuation $v_{p}: \mathbb{Z} \rightarrow \mathbb{Z} \geq 0 \cup\{\infty\}$ is function defined as $v_{p}(n)=\max \left\{v \in \mathbb{Z} \geq 0: p^{v} \mid n\right\}$ if $n \neq 0$, and $v_{p}(n)=\infty$ if $n=0$.
Suppose that α, β, and γ are integers satisfying $\gamma=\frac{\alpha^{3}-\beta^{2}}{1728}$, with $\gamma \neq 0$.
Then Kraus's Theorem asserts that there exists a rational elliptic curve E given by a Weierstrass model with integral coefficients having invariants $c_{4}=\alpha$ and $c_{6}=\beta$ if and only if
(i) $v_{3}(\beta) \neq 2$, and
(ii) either $\beta \equiv-1(\bmod 4)$, or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0$ or $8(\bmod 32)$.

Modular Curves and Minimal Discriminants Let E be a rational elliptic curve given by the Weierstrass mode We say $E_{\text {min }}$ is a global minimal model of E if (i) each of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, c_{4}, c_{6}$, and Δ are integers, and (ii) the value $|\Delta|$ is minimal over all \mathbb{Q}-isomorphic elliptic curves to E. We call Δ the minimal discriminant of $E_{\text {min }}$ and denote it by $\Delta_{E}^{\min }$, and we call the quantities c_{4} and c_{6} of a global model the associated quantities to a minimal model.
By an is
equivalent to $\left(E_{2} F^{\prime}\right.$ class of triples we mean that $\left(E_{1}, E_{1}^{\prime}, \pi_{1}\right)$ equivalent to $\left(E_{2}, E_{2}^{\prime}, \pi_{2}\right)$ if and only if there exist isomorphisms
$\varphi: E_{1} \rightarrow E_{2}$ and $\varphi^{\prime}: E_{1}^{\prime} \rightarrow E_{2}^{\prime}$ such that $\pi_{2} \circ \varphi=\varphi^{\prime} \circ \tau_{1}$
$\varphi: E_{1} \rightarrow E_{2}$ and $\varphi: E_{1} \rightarrow E_{2}$ such that $\pi_{2} \circ \varphi=\varphi^{\prime} \circ \pi_{1}$.

- The modular curve $X_{0}(N)$ for $N \geq 2$ parametrizes isomorphism classes of triples $\left(E_{1}, E_{2}, \pi\right)$ where $\pi: E_{1} \rightarrow E_{2}$ is an isogeny with ker $\pi \cong C$ of triples $\left(E_{1}, E_{2}, \pi\right)$ where $: E_{1} \rightarrow E_{2}$
where C_{N} is the cyclic group of order N.
For the modular curve $X_{0}(N)$ to be of genus 0 it is necessary and sufficient that $N=1,2, \ldots, 10,12,13,16,18$, or 25 .
Let $X_{0}(N)$ be a genus 0 modular curve and recall that $\mathbb{P}^{1}(\mathbb{Q})$ is bijective to $\mathbb{Q} \cup\{\infty\}$. Then there exists a birational map $\varphi: \mathbb{P}^{1}(\mathbb{Q}) \rightarrow X_{0}(N)$ defined by
$\varphi(t: 1)=\left[E_{1}(t), E_{2}(t), \pi_{t}\right]$
with the property that if $t \in \mathbb{Q}$ then $E_{1}(t)$ and $E_{2}(t)$ are eliptic curves ove \mathbb{Q} with $\pi_{t}: E_{1}(t) \rightarrow E_{2}(t)$ a \mathbb{Q}-isogeny and ker $\pi_{t} \cong C_{N}$. We can use this
to parametrize elliptic curves $E_{N}(t)$ and $E_{N, 2}(t)$ where $t=b / a$ with to parametrize elliptic curves $E_{N, 1}(t)$ and $E_{N, 2}(t)$, where $t=b / a$ with
$a, b \in \mathbb{Z}$, and, utilizing Kraus's Theorem, we are able to classify minimal
discriminants of representative curves of $E_{N, 1}(t)$ and $E_{N, 2}(t)$.
For example, consider the elliptic curves $E_{8,1}(t)$ and $E_{8,2}(t)$, defined as

$$
\begin{aligned}
& E_{8,1}(t): y^{2}=x^{3}-27_{4,1}(t) x-54 a_{6,1}(t) \\
& E_{8,2}(t): y^{2}=x^{3}-2 a_{4,2}(t) x-54 a_{6,2}(t)
\end{aligned}
$$

where $a_{4,1}(t)=t^{4}+60 t^{3}+134 t^{2}+60 t+1, a_{4,2}(t)=16 t^{4}-16 t^{2}+$ $a_{6,1}(t)=\left(t^{4}-132 t^{3}-250 t^{2}-132 t+1\right)\left(t^{2}+6 t+1\right)$, and, lastly,
$a_{6,2}(t)=\left(32 t^{4}-32 t^{2}-1\right)\left(2 t^{2}-1\right)$. $a_{6,2}(t)=\left(32 t^{4}-32 t^{2}-1\right)\left(2 t^{2}-1\right)$.
If we set $t=b / a$, then we can explicitly
If we set $t=b / a$, then we can explicitly compute the discriminant and
invariants of these curves, and by making use of admissible changes of variables and Kraus's Theorem, we can completely classify the minimal
diseriminat of these discriminant of these curves. This methodology can be utilized for arbitrary
$E_{N, 1}(t)$ and $E_{N, 2}(t)$, which led us to our theorem below.

Theorem (CEGHL

Let $a, b \in \mathbb{Z}$ be coprime, let
$\quad f_{5}=125 a^{2}+22 a b+b^{2}$
$X_{0}(N)$, and suppose that
$f_{5}=125 a^{2}+22 a b+b^{2}$
$f_{7}=49 a^{2}+13 a b+b^{2}$
is 4 power free if $N=5$,
$\begin{aligned} f^{2} & \text { is } 6^{\text {th }} \text { power free if } N=7, \\ \text { and } f_{13} & =\left(13 a^{2}+5 a b+b^{2}\right)\left(13 a^{2}+6 a b+b^{2}\right) \text { is } 6^{\text {th }} \text { power free if } N=13\end{aligned}$ Then the minimal discriminant of $E_{N, j}$ is $u_{N, j}^{-12} \Delta_{N, j}$, where $u_{N, j}$ is one of the possibilities given below.

 $u_{N, 2}$ divides 10
Moreover, there are necessary and sufficient conditions on a, b to determine exactly the value of $u_{N, j}$ as summarized in the following:
$u_{N, j}=50 \Longleftrightarrow v_{5}(b) \geq 3$ where $2 \nmid a$
$u_{N, j}=25 \Longleftrightarrow v_{5}(b) \geq 3$ where $2 \mid$
$u_{N, j}=5 \Longleftrightarrow v_{5}(b)=2$
$u_{N, j}=2 \Longleftrightarrow v_{5}(b)=1$ where $2 \nmid a$
$u_{N, j}=1 \Longleftrightarrow v_{5}(b)=1$ where $2 \mid a$ or $v_{5}(b)=0$
$u_{N, j}=10$
u_{0}
$u_{N, j}=5 \Longleftrightarrow v_{5}(b) \geq 3$ where $2 \mid$
$u_{N, j}=2 \Longleftrightarrow v_{5}(b) \leq 2$ where $2 \nmid a$
$u_{N, j}=1 \Longleftrightarrow v_{5}(b) \leq 2$ where $2 \mid a$
$u_{N, j}=6 \Longleftrightarrow v_{3}(b)=1$ where $2 \mid b$
$\begin{aligned} u_{N, j}=6 & \Longleftrightarrow v_{3}(b)=1 \text { where } 2 \mid b \text { and } a b \equiv 6 \bmod 9\end{aligned}$
$u_{N, j}=3 \Longleftrightarrow v_{3}(b)=1$ where $2 \nmid b$ and $a b \equiv 6 \bmod 9$

$\begin{aligned} u_{N, j}=1 & \Longleftrightarrow 2 \nmid b \text { and } v_{3}(b) \neq 1 \text { or } v_{3}(b)=1 \text { with } a b \equiv 3 \bmod 9 \\ u_{N, j}=4 & v_{2}(b)=1\end{aligned}$
$u_{N, j}=4 \Longleftrightarrow v_{2}(b)=1$
$u_{N, j}=2 \Longleftrightarrow v_{2}(b) \geq 2$
2) $u_{N, j}=2 \Longleftrightarrow v_{2}(b) \geq 2$

Modified Szpiro Ratios

- Denoted $P=(a, b, c)$, an $A B C$ triple is a triple of relatively prime non-zero integers a, b, and c where $a+b=c$.
-The quality of an $A B C$ triple $P=(a, b, c)$ is the quantity

$$
q(P)=\frac{\log \max \{|a|, b|,|c|\}}{\log (a c)} .
$$

The $A B C$ conjecture states that for all $\varepsilon>0$ there are only finitely many $A B C$ triples satisfying $q(P)>1$
If a prime p divides gcd $\left(c_{4}, \Delta\right)$ then we say that E has additive reduction at p. Otherwise, we say that E is semistable at p, and if E is semistable at all primes, we call E semistable

$$
v_{E}=\prod_{n \mid \Delta \min }
$$

where $f_{p}=1$ if E is semistable at p, and $2+\delta_{p}$ if E, has additive reductio where $f_{p}=1$ if E is semistable at p, and $2+\delta_{p}$ if E, has
at at p, and δ_{p} is a function that depends on the primes. If two elliptic curves E and E^{\prime} are isogenous, then $N_{E}=$ Let E be a rational elliptic curve with minimal discriminant Δ_{E}^{\prime} min invariants c_{4} and c_{6}. By a modified Szpiro ratio, we mean the quantit $\sigma_{m}(E)=\frac{\log \max \left\{\left|c_{4}^{3}\right|, c_{6}^{2}\right\}}{\log N_{E}}$. If $\sigma_{m}(E)>6$, we say E is good. If two elliptic curves E and E^{\prime} are isogenous, then $\sigma_{m}(E)=\sigma_{m}\left(E^{\prime}\right)$. - The modified Szpiro conjecture states that for all $\varepsilon>0$ there are on - The Modified SZpiro Conjecture and $A B C$ Conjecture are equivalent, and the explicit $A B C$ Conjecture implies Fermat's Last Theorem for $n \geq 6$.

Database of Elliptic Curves

- The ABC @ Home project was a find good elliptic curves with home-computing project that sought specified isogeny, so we constructed to compute good $A B C$ triples. By 2011, they met their goal of
computing 23.8 million good $A B C$ triples, after which they ceased operations. Similarly, we wanted and found curves admitting isogeny degrees of $N=6,7,8,9,10,12,13$, and 16 . - We define S as the set
$\left\{\begin{array}{l}\left.\left.\frac{b}{a} \right\rvert\, \operatorname{gcd}(a, b)=1 \text { and } 1 \leq a, b \leq 650\right\}, \\ \text { set }\left\{E_{N, 1}(t), E_{N, 2}(t)\right\} \text { such that } t \in S .\end{array}\right.$

Recall that any rational elliptic curve E has a olobal minimal model $E_{\text {min }}$ There is also a reduced minimal model of E given by a Weierstrass model $\quad y^{2}+b_{1} x y+b_{3} y=x^{3}+b_{2} x^{2}+b_{4} x+b_{6}$ where the reduced minimal model is a global minimal model, with $b_{1}, b_{3} \in\{0,1\}$ and $b_{2} \in\{-1,0,1\}$. The reduced minimal model of E is unique. - Using the elements of S as parameters for $E_{N, 1}(t)$ and $E_{N, 2}(t)$, and
assuring uniqueness by checking reduced minimal models were distinct, we assuring uniqueness by checking reduced min produce the database in Figure 3,
were able to write a computer program to prod containing over $21,000,000$ unique elliptic curves with specified isogeny:

gure 3: Database of elliptic curyes

- Below are histograms showing the distribution of Modified Szpiro Ratios (MSRs) for elliptic curves of isogeny degree $N=8$ and 12 . It is noteworthy that as the MSRs grow larger, the number of elliptic curves with these MSRs appears to decay almost exponentially. It is also noteworthy that the MSRs appear to have a lower bound. For example, curves with isogeny
degree 12 appear to have MSRs bounded below by 4 .

Figure 4: Modified Szpiro ratios for $X_{0}\left(\frac{1}{2}\right)$

Going forward, we hope to finish classifying minimal discriminants for elliptic curves admitting isogeny degree of $N=2,3,4,10,11,12,13,16,18$, and 25 , and
to generate more elliptic curves with non-trivial isogeny. Moreover, we hope to to generate more elliptic curves with non-trivial isogeny. Moreover, we hope to
articulate a conjecture about lower bounds of modified Szpiro ratios of elliptic curves of non-trivial isogeny
[1] A. Barrios, "Modular Curves and the Modified Szpiro Conjecture" (2019) [2] S. Lang, "Old and New Conjectured Diophantine Inequalities." Bulletin of The American Mathematical Society (1990)
[3] T. Weston, "The Modular Curves $X_{0}(11)$ and $X_{1}(11)$ " (2012)
Acknowledgements
We would like to acknowledge Dr. Alexander Barrios (Carleton College), Dr. Edray Herber Goins (Pomona College), Alia Curtis (Scripps College) Dr. Tim McEldowney (West Virginia University), the Department of Mathe matics at Pomona College, the National Science Foundation (DMS-1560394),

Carleton
UCSB
Evin.
Eckerd College

