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Abstract
By a rational elliptic curve, we mean a projective variety of genus 1 that admits
a Weierstrass model of the form y2 = x2 +Ax+B where A and B are integers.
For a rational elliptic curve E, there is a unique quantity known as the minimal
discriminant which has the property that it is the smallest integer (in absolute
value) occurring in the Q-isomorphism class of E. In 1975, Hellegouarch showed
that for relatively prime integers a and b the elliptic curve y2 = x(x+ a)(x− b)
comes equipped with an easily computable minimal discriminant. Recently,
Barrios extended this result to all rational elliptic curves with non-trivial torsion
subgroups. This project gives a classification of minimal discriminant for rational
elliptic curves that admit an isogeny of degree N = 5, 6, 7, 8, 9, 13.

Elliptic Curves
• A Weierstrass model is an implicit function E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where each aj is a rational number. When E is differentiable at every point
on the curve, we say that E is non-singular.
• An elliptic curve is defined as a
pair (E,O) where E is a smooth
projective curve of genus 1 and O is
an element of E.
• Intuitively, a rational elliptic
curve is the graph of a non-singular
Weierstrass model E together with
a point O not on E, often referred
to as the “point at infinity.”
•We define the Q-rational points
of an elliptic curve E as the set E(Q)
of points (x, y) ∈ Q2 satisfying the
Weierstrass model of E.
• The set E(Q) is a finitely-generated
abelian group under its group law,
portrayed graphically on the right,
with identity O.

Figure 1: The group law of an elliptic curve.

•We define the invariants c4 and c6, the discriminant ∆, and the
j-invariant j of an elliptic curve E to be
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•We say that E is C-isomorphic to E′ if and only if j = j′, where j is the
j-invariant of E and j′ is the j-invariant of E′.
• A Q-isogeny between two elliptic curves E and E′ is a non-constant
morphism ϕ from E to E′ such that ϕ(OE) = OE′ where ϕ is defined over
Q. If such a morphism exists, E and E′ are said to be isogenous and in
the same isogeny class.

Figure 2: Three Q-isomorphic elliptic curves.

• Let E and E′ be isogenous rational
elliptic curves, and suppose that φ is
a Q-isogeny between them. We say
that φ is a Q-isomorphism and
an admissible change of
variables if and only if
φ(x, y) = (u2x+r, u3y+u2sx+w)
where u, s, r, w ∈ Q. If ∆, c4, c6
are associated to E and ∆′, c′4, c

′
6

are associated to E′, we have the
relations ∆′ = u−12∆, c′6 = u−6c6,
and c′4 = u−4c4. Curves between
which such a φ exists are said to be
Q-isomorphic.

Kraus’s Theorem
• Let p be a prime. The p-adic valuation vp : Z→ Z≥0 ∪ {∞} is a
function defined as vp(n) = max{v ∈ Z≥0 : pv |n} if n 6= 0, and
vp(n) =∞ if n = 0.
• Suppose that α, β, and γ are integers satisfying γ = α3−β2

1728 , with γ 6= 0.
Then Kraus’s Theorem asserts that there exists a rational elliptic curve
E given by a Weierstrass model with integral coefficients having invariants
c4 = α and c6 = β if and only if
(i) v3(β) 6= 2, and
(ii) either β ≡ −1 (mod 4), or both v2(α) ≥ 4 and β ≡ 0 or 8 (mod 32).

Modular Curves and Minimal Discriminants
• Let E be a rational elliptic curve given by the Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

We say Emin is a global minimal model of E if
(i) each of a1, a2, a3, a4, a6, c4, c6, and ∆ are integers, and
(ii) the value |∆| is minimal over all Q-isomorphic elliptic curves to E.
We call ∆ the minimal discriminant of Emin and denote it by ∆min

E ,
and we call the quantities c4 and c6 of a global model the associated
quantities to a minimal model.
• By an isomorphism class of triples we mean that (E1, E′1, π1) is
equivalent to (E2, E′2, π2) if and only if there exist isomorphisms
ϕ : E1→ E2 and ϕ′ : E′1→ E′2 such that π2 ◦ ϕ = ϕ′ ◦ π1.
• The modular curve X0(N) for N≥2 parametrizes isomorphism classes
of triples (E1, E2, π) where π :E1→E2 is an isogeny with ker π ∼= CN ,
where CN is the cyclic group of order N .
• For the modular curve X0(N) to be of genus 0 it is necessary and sufficient
that N= 1, 2, . . . , 10, 12, 13, 16, 18, or 25.
• Let X0(N) be a genus 0 modular curve and recall that P1(Q) is bijective to
Q ∪ {∞}. Then there exists a birational map ϕ : P1(Q)→ X0(N) defined
by

ϕ(t : 1) = [E1(t), E2(t), πt]
with the property that if t ∈ Q then E1(t) and E2(t) are elliptic curves over
Q with πt : E1(t)→ E2(t) a Q-isogeny and ker πt ∼= CN . We can use this
to parametrize elliptic curves EN,1(t) and EN,2(t), where t = b/a with
a, b ∈ Z, and, utilizing Kraus’s Theorem, we are able to classify minimal
discriminants of representative curves of EN,1(t) and EN,2(t).
• For example, consider the elliptic curves E8,1(t) and E8,2(t), defined as

E8,1(t) : y2 = x3 − 27a4,1(t)x− 54a6,1(t)
E8,2(t) : y2 = x3 − 27a4,2(t)x− 54a6,2(t)

where a4,1(t) = t4 + 60t3 + 134t2 + 60t + 1, a4,2(t) = 16 t4 − 16 t2 + 1,
a6,1(t) =

(
t4 − 132 t3 − 250 t2 − 132 t + 1

)(
t2 + 6 t + 1

)
, and, lastly,

a6,2(t) =
(
32 t4 − 32 t2 − 1

)(
2 t2 − 1

)
.

• If we set t = b/a, then we can explicitly compute the discriminant and
invariants of these curves, and by making use of admissible changes of
variables and Kraus’s Theorem, we can completely classify the minimal
discriminant of these curves. This methodology can be utilized for arbitrary
EN,1(t) and EN,2(t), which led us to our theorem below.

Theorem (CEGHL)

Let a, b ∈ Z be coprime, let (EN,1, EN,2, πN ) ∈ X0(N), and suppose that
f5 = 125a2 + 22ab + b2 is 4th power free if N = 5,
f7 = 49a2 + 13ab + b2 is 6th power free if N = 7,

and f13 =
(
13a2 + 5ab + b2

) (
13a2 + 6ab + b2

)
is 6th power free if N = 13.

Then the minimal discriminant of EN,j is u−12
N,j ∆N,j, where uN,j is one of

the possibilities given below:
(N, 1) (5, 1) (6, 1) (7, 1) (8, 1) (9, 1) (13, 1)

uN,1 divides 50 6 98 8 9 26
(N, 2) (5, 2) (6, 2) (7, 2) (8, 2) (9, 2) (13, 2)

uN,2 divides 10 4 14 2 3 26
Moreover, there are necessary and sufficient conditions on a, b to determine
exactly the value of uN,j as summarized in the following:
(N, j) Conditions on uN,j

(5, 1)

uN,j = 50⇐⇒ v5(b) ≥ 3 where 2 -a
uN,j = 25⇐⇒ v5(b) ≥ 3 where 2 |a
uN,j = 5 ⇐⇒ v5(b) = 2
uN,j = 2 ⇐⇒ v5(b) = 1 where 2 -a
uN,j = 1 ⇐⇒ v5(b) = 1 where 2 |a or v5(b) = 0

(5, 2)

uN,j = 10⇐⇒ v5(b) ≥ 3 where 2 -a
uN,j = 5 ⇐⇒ v5(b) ≥ 3 where 2 |a
uN,j = 2 ⇐⇒ v5(b) ≤ 2 where 2 -a
uN,j = 1 ⇐⇒ v5(b) ≤ 2 where 2 |a

(6, 1)

uN,j = 6 ⇐⇒ v3(b) = 1 where 2 |b and ab ≡ 6 mod 9
uN,j = 3 ⇐⇒ v3(b) = 1 where 2 -b and ab ≡ 6 mod 9
uN,j = 2 ⇐⇒ 2 |b and v3(b) 6= 1 or v3(b) = 1 with ab ≡ 3 mod 9
uN,j = 1 ⇐⇒ 2 -b and v3(b) 6= 1 or v3(b) = 1 with ab ≡ 3 mod 9

(6, 2)
uN,j = 4 ⇐⇒ v2(b) = 1
uN,j = 2 ⇐⇒ v2(b) ≥ 2
uN,j = 1 ⇐⇒ v2(b) = 0

(N, j) Conditions on uN,j (continued)

(7, 1)

uN,j = 98⇐⇒ v7(b) = 2, v7(f7) = 5, and ab ≡ 1, 2 mod 4
uN,j = 49⇐⇒ v7(b) = 2, v7(f7) = 5, and ab ≡ 0, 3 mod 4
uN,j = 14⇐⇒ v7(b) ≥ 3 and ab ≡ 1, 2 mod 4
uN,j = 7 ⇐⇒ v7(b) ≥ 3 and ab ≡ 0, 3 mod 4
uN,j = 2 ⇐⇒ 4 -ab and above conditions do not hold
uN,j = 1 ⇐⇒ all above conditions do not hold

(7, 2)

uN,j = 14⇐⇒ v7(b) = 2, v7(f7) = 5, and ab ≡ 1, 2 mod 4
uN,j = 7 ⇐⇒ v7(b) = 2, v7(f7) = 5, and ab ≡ 0, 3 mod 4
uN,j = 2 ⇐⇒ ab ≡ 1, 2 mod 4 and above conditions do not hold
uN,j = 1 ⇐⇒ all above conditions do not hold

(8, 1)

uN,j = 6 ⇐⇒ v2(a− b) ≥ 3
uN,j = 3 ⇐⇒ v2(a− b) = 2
uN,j = 2 ⇐⇒ v2(a− b) = 13
uN,j = 1 ⇐⇒ v2(a− b) = 0

(8, 2) uN,j = 2 ⇐⇒ v2(a) ≥ 1 or v2(b2 − a2) ≥ 4
uN,j = 1 ⇐⇒ all above conditions do not hold

(9, 1)
uN,j = 9 ⇐⇒ v2(a− b) ≥ 2
uN,j = 3 ⇐⇒ v2(a− b) = 1
uN,j = 1 ⇐⇒ v2(a− b) = 0

(9, 2)
uN,j = 3 ⇐⇒ v2(a− b) ≥ 2 or 3 |a
uN,j = 1 ⇐⇒ v2(a− b) ≤ 1 or 3 -a

(13, j)

uN,j = 26⇐⇒ v13(b) ≥ 1 and either b ≡ 2 mod 4 or v2(a) ≥ 2
uN,j = 13⇐⇒ v13(b) ≥ 1 and either b 6≡ 2 mod 4 or v2(a) ≤ 1
uN,j = 2 ⇐⇒ v13(b) = 0 and either b ≡ 2 mod 4 or v2(a) ≥ 2
uN,j = 1 ⇐⇒ v13(b) = 0 and either b 6≡ 2 mod 4 or v2(a) ≤ 1

Modified Szpiro Ratios
• Denoted P = (a, b, c), an ABC triple is a triple of relatively prime
non-zero integers a, b, and c where a + b = c.
• The quality of an ABC triple P = (a, b, c) is the quantity

q(P ) = log max {|a|, |b|, |c|}
log (abc)

.

The ABC conjecture states that for all ε > 0 there are only finitely many
ABC triples satisfying q(P ) > 1 + ε.
• If a prime p divides gcd(c4,∆) then we say that E has additive
reduction at p. Otherwise, we say that E is semistable at p, and if E
is semistable at all primes, we call E semistable.
•We define the conductor of a rational elliptic curve E as the quantity

NE =
∏

p|∆min
E

pfp,

where fp = 1 if E is semistable at p, and 2 + δp if E, has additive reduction
at at p, and δp is a function that depends on the primes.
• If two elliptic curves E and E′ are isogenous, then NE = NE′.
• Let E be a rational elliptic curve with minimal discriminant ∆min

E and
invariants c4 and c6. By a modified Szpiro ratio, we mean the quantity

σm(E) =
log max{|c3

4|, c
2
6}

log NE
. If σm(E) > 6, we say E is good.

If two elliptic curves E and E′ are isogenous, then σm(E) = σm(E′).
• The modified Szpiro conjecture states that for all ε > 0 there are only
finitely many rational elliptic curves E satisfying σm(E) > 6 + ε.
• The Modified Szpiro Conjecture and ABC Conjecture are equivalent, and
the explicit ABC Conjecture implies Fermat’s Last Theorem for n ≥ 6.

Database of Elliptic Curves
• The ABC@Home project was a
home-computing project that sought
to compute good ABC triples. By
2011, they met their goal of
computing 23.8 million good ABC
triples, after which they ceased
operations. Similarly, we wanted to

find good elliptic curves with
specified isogeny, so we constructed a
database of elliptic curves.

• To construct the database of elliptic curves, we used themodular curveX0(N),
and found curves admitting isogeny degrees ofN=6, 7, 8, 9, 10, 12, 13, and 16.
•We define S as the set

S =
{
b

a

∣∣∣∣ gcd(a, b) = 1 and 1 ≤ a, b ≤ 650
}
,

and consider the subset {EN,1(t), EN,2(t)} such that t ∈ S.

• Recall that any rational elliptic curve E has a global minimal model Emin.
There is also a reduced minimal model of E given by a Weierstrass
model

y2 + b1xy + b3y = x3 + b2x
2 + b4x + b6

where the reducedminimalmodel is a globalminimalmodel, with b1, b3∈{0, 1}
and b2 ∈ {−1, 0, 1}. The reduced minimal model of E is unique.
• Using the elements of S as parameters for EN,1(t) and EN,2(t), and
assuring uniqueness by checking reduced minimal models were distinct, we
were able to write a computer program to produce the database in Figure 3,
containing over 21,000,000 unique elliptic curves with specified isogeny.

Figure 3: Database of elliptic curves

• Below are histograms showing the distribution of Modified Szpiro Ratios
(MSRs) for elliptic curves of isogeny degree N = 8 and 12. It is noteworthy
that as the MSRs grow larger, the number of elliptic curves with these
MSRs appears to decay almost exponentially. It is also noteworthy that the
MSRs appear to have a lower bound. For example, curves with isogeny
degree 12 appear to have MSRs bounded below by 4.

Figure 4: Modified Szpiro ratios for X0(12)

Figure 5: Modified Szpiro ratios for X0(8)

Future Work
Going forward, we hope to finish classifying minimal discriminants for elliptic
curves admitting isogeny degree of N = 2, 3, 4, 10, 11, 12, 13, 16, 18, and 25, and
to generate more elliptic curves with non-trivial isogeny. Moreover, we hope to
articulate a conjecture about lower bounds of modified Szpiro ratios of elliptic
curves of non-trivial isogeny.
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